If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c^2=89
We move all terms to the left:
c^2-(89)=0
a = 1; b = 0; c = -89;
Δ = b2-4ac
Δ = 02-4·1·(-89)
Δ = 356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{356}=\sqrt{4*89}=\sqrt{4}*\sqrt{89}=2\sqrt{89}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{89}}{2*1}=\frac{0-2\sqrt{89}}{2} =-\frac{2\sqrt{89}}{2} =-\sqrt{89} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{89}}{2*1}=\frac{0+2\sqrt{89}}{2} =\frac{2\sqrt{89}}{2} =\sqrt{89} $
| 1.7=4y+21.3 | | n/13=17 | | 4x-4-x=-16 | | 9=3(t+18) | | 1.2x=6.72 | | -5/9x+58=-12 | | -80=-16a | | 8/7x+8=0 | | 1.2x=6.27 | | c^2=841 | | (x+2)(x+5)=3(x+2) | | -4(d-19)=8 | | -3+5x+6x=74 | | 8b=11b | | 4.9x=54.12 | | 7.3x-13.9=44.5 | | -4(p-15)=-20 | | c^2=400 | | 9n+4=5n+14 | | ((5x−16)³−4)³=216,000 | | 1/4x-5/8x=30-54 | | 5x+5+4x-10+4x+15+4x+15+4x-10=540 | | 7x-8(x+3)=7x+9 | | a−2=3/4 | | 8=4(r+4)= | | (4x+10)=(54) | | 4y+5=3y-6 | | b^2=576 | | -6(2x+6)=48 | | 2y+12.0=34.0 | | 6x-18=5x+25 | | 4(2+3x)+6(3x-2)=146 |